Topics: Introduction to R and R Studio. Packages. Working Directory. Dataframes and functions.
Registration: Sign-up Link.
Anderson, B. (2017). Week 1 Slides: Preliminaries in R. R Programming for Research Course.
R Studio (2017). R Studio IDE Cheatsheet.
Anderson, B. (2017). Week 1: Preliminaries in R. R Programming for Research Course.
Grolemund G., & Wickham, H. (2017). Workflow Basics. R for Data Science.
Grolemund G., & Wickham, H. (2017). Workflow Scripts. R for Data Science.
Topics: Importing data (csv, Stata, SAS). Data wrangling, aggregation and filtering (dplyr).
Registration: Sign-up Link.
Anderson, B. (2017). Week 2 Slides: Entering & Cleaning Data. R Programming for Research Course.
R Studio (2017). R Studio Data Import Cheatsheet.
Grolemund G., & Wickham, H. (2017). Data Import. R for Data Science.
Grolemund G., & Wickham, H. (2017). Data Transformation. R for Data Science.
R Studio (2017). R Studio Importing Data into R Webinar.
Wickham, H. (2017). Data Structures. Advanced R.
Topics: Overview of Tidyverse: tidyr, dplyr, ggplot2, readr, purrr
Registration: Sign-up Link.
R Studio (2017). Tidyverse.
Soltoff, B. (2017). Data transformation and exploratory data analysis slides. Computing for the Social Sciences
R Studio (2017). R Studio Data Transformation Cheatsheet.
Grolemund G., & Wickham, H. (2017). Tidy Data. R for Data Science.
Soltoff, B. (2017). dplyr in brief. Computing for the Social Sciences.
Bryan, J. (2017). purrr tutorial.
Gillespie G., & Lovelace, R. (2017). Efficient data carpentry.. Efficient R programming.
Topics: R Markdown and Bookdown. Introduction to Git
Registration: Sign-up Link.
Anderson, B. (2017). Week 5 Slides: Reproducible Research. R Programming for Research Course.
Bryan, J. (2017). STAT545 Course 1 Slides.
Bryan, J. (2017). Happy with Git and GitHub for the useR.
Grolemund G., & Wickham, H. (2017). RMarkdown. R for Data Science.
Grolemund G., & Wickham, H. (2017). RMarkdown Formats. R for Data Science.
R Studio (2016). RMarkdown Cheatsheet.
Wickham, H. (2015). Git and Github. R Packages.
Topics: Introduction to visualizations. ggplot2. Interactive visualizations using HTMLWidgets.
R Studio. (2017) R Studio HTML Widgets.
R Studio. (2017) R Studio Shiny.
R Studio. (2017) R Studio Data Visualization Cheatsheet.
Grolemund G., & Wickham, H. (2017). Data Visualization (ggplot2). R for Data Science.
Grolemund G., & Wickham, H. (2017). Exploratory Data Analysis. R for Data Science.
HTML Widgets: plotly, leaflet, streamgraph, visNetwork.
Topics: Define API’s. Twitter’s Public API (REST and Stream). Facebook API.
Barberá, P. (2017). Scraping the Web . POIR 613: Measurement Models and Statistical Computing.
Tufekci, Z. (2014). Big questions for social media big data: Representativeness, validity and other methodological pitfalls. arXiv preprint arXiv:1403.7400.
Morstatter, F., & Liu, H. (2017). Discovering, assessing, and mitigating data bias in social media. Online Social Networks and Media, 1, 1-13.
Topics: Basic concepts in social network analysis. Centrality measures. Network visualization.
Barberá, P. (2017). Intro to Social Network . POIR 613: Measurement Models and Statistical Computing.
Denny, M. (2014). Social Network Analysis . Institute for Social Science Research .
Ognyanova, K. (2017). Network visualization with R. POLNET 2017 Workshop, Columbus, OH.
Lazer, D., Pentland, A. S., Adamic, L., Aral, S., Barabasi, A. L., Brewer, D., … & Jebara, T. (2009). Life in the network: the coming age of computational social science. Science, 323(5915), 721-3.
McPherson, M., Smith-Lovin, L., & Cook, J. M. (2001). Birds of a feather: Homophily in social networks. Annual review of sociology, 27(1), 415-444.
Barberá, P. (2017). Introduction to social network analysis with R. POIR 613: Measurement Models and Statistical Computing.
Barberá, P. (2017). Social network analysis with R: Descriptive analysis. POIR 613: Measurement Models and Statistical Computing.
Topics: Predictive versus explanatory analysis. Evaluation: Holdout/Cross Validation. Supervised and unsupervised machine learning. Regularization.
Mullainathan, S., & Spiess, J. (2017). Machine Learning: An Applied Econometric Approach. Journal of Economic Perspectives, 31(2), 87-106.
Grimmer, J. (2015). We are all social scientists now: how big data, machine learning, and causal inference work together. PS: Political Science & Politics, 48(1), 80-83.
Athey, S., & Imbens, G. (2015). Machine Learning Methods for Causal Effects.
Barberá, P. (2017). Supervised Machine Learning . POIR 613: Measurement Models and Statistical Computing.
Topics: tidytext. Bag of words. Word frequencies, TF-IDF and Zipf’s Law. Dictionary-based methods.
Rothenberg, M. (2017) Emoji Tracker.
University of Vermont Complex Systems Center (2017) Hedonometer.
Silge, J. & Robinson, D. (2017) Text Mining with R.(Zip File).
Young, L., & Soroka, S. (2012). Affective news: The automated coding of sentiment in political texts. Political Communication, 29(2), 205-231.
Tausczik, Y. R., & Pennebaker, J. W. (2010). The psychological meaning of words: LIWC and computerized text analysis methods. Journal of language and social psychology, 29(1), 24-54.
Topics: Text as Data. Supervised (Text Classification) and Unsupervised Models (Topic Models, Word Scaling and Word Embedding)
Benoit, K. et al. (2017) Getting Started with quanteda.
Blei, D. M. (2012). Probabilistic topic models. Communications of the ACM, 55(4), 77-84.
Grimmer, J., & Stewart, B. M. (2013). Text as data: The promise and pitfalls of automatic content analysis methods for political texts. Political analysis, 21(3), 267-297.
Roberts, M. E., Stewart, B. M., Tingley, D., Lucas, C., Leder‐Luis, J., Gadarian, S. K., … & Rand, D. G. (2014). Structural Topic Models for Open‐Ended Survey Responses. American Journal of Political Science, 58(4), 1064-1082.
Lowe, W. (2008). Understanding wordscores. Political Analysis, 16(4), 356-371.
Gentzkow, M., Kelly, B. T., & Taddy, M. (2017). Text as Data, Working paper.
Denny, M. J., & Spirling, A. (2017). Text preprocessing for unsupervised learning: why it matters, when it misleads, and what to do about it. Working paper, New York University.
Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781.